ANAVI Info uHAT Demo at the Technical University of Berlin

On 29th June, we had the opportunity to present and demonstrate the ANAVI Info uHAT add-on board for Raspberry Pi and some of our other open source hardware gadgets at the Technical University of Berlin for an event called “Open Source Hardware: Tools and Collaborations for A Better (Product) Future”.

OPENNEXT agenda on 29 June 2022

The event was organized by OPENNEXT. This is an organization that aims to bring together SMEs and makerspaces across the European Union (EU) to develop new hardware products based on open-source principles. The event brought together representatives of the Technical University Berlin, the Grenoble Institute of Technology, the University of Bath, the DDC – Danish Design Center, and many more organizations involved with open source software and hardware. Lukas Hartmann, the creator of the open source DIY laptop MNT Reform, was also a panel speaker at the event.

Panel discussion during OPENNEXT event in the Technical University of Berlin

This event was a great opportunity to show off the ANAVI Info uHAT with a mini OLED I2C display attached to the top of a Raspberry Pi and controlled using a Python3 script with the luma.oled library. The source code is available in GitHub. In the meantime, we are also improving the ANAVI Info uHAT user’s manual which is also available in GitHub.

Last but not least, don’t forget to check and support the crowdfunding campaign for ANAVI Info uHAT at Crowd Supply.

You may also like

ANAVI Info uHAT – an open hardware Raspberry Pi add-on board with a mini OLED display, buttons, and slots for sensors

Together with Crowd Supply we recently launched a new crowd funding campaign for ANAVI Info uHAT – an open hardware Raspberry Pi add-on board with a mini OLED display, buttons, and slots for sensors.

Thanks to early backers ANAVI Info uHAT was successfully funded and hit its first stretch goal in a just a couple of days. So we’ll be adding some awesome KiCad and ANAVI Technology stickers. KiCad is the free and open source software we used to design this and other Anavi printed circuit boards.

As a small open source project, ANAVI Info uHAT relies on the community of passionate open source makers. We are near our second stretch goal of $1,000. If we hit it, we will make more video tutorials for all supported sensors.

There is still more than a month until the end of the crowdfunding campaign and we hope more people will jump in and order ANAVI Info uHAT!

You may also like

AI-Thinker – a Trusted Supplier During the Global Chip Shortage

AI-Thinker is a leading supplier of IoT wireless products and solutions, including antennas, modules and RF lab service. Since 2017 we have been using AI-Thinker ESP-12E modules with ESP8266 in many of our open source hardware products, including ANAVI Fume Extractor, ANAVI Gas Detector, ANAVI Thermometer, ANAVI Light Controller and ANAVI Miracle Controller.

AI Thinker modules with ESP8266

Now, despite the hard times of global chip shortage, AI-Thinker keeps manufacturing and delivering high-quality modules on time. As a trusted supplier through the years, recently we have purchased from AI Thinker enough ESP-12E modules do fulfill the demand and keep making our open source hardware products.

AI Thinker modules with RISC-V microcontroller

Furthermore we stocked ESP-C3-12F modules with Espressif Systems ESP32-C3 Wi-Fi microcontroller based on the open standard instruction set architecture (ISA) RISC-V. ESP-C3-12F are pin to pin compatible with ESP-12E.

AI Thinker ESP32

AI-Thinker is based in Shenzhen, China. The company was founded 10 years ago, in 2012. They also provide LoRaWAN, NB-IoT, Bluetooth and other Wi-Fi modules.

You may also like

ANAVI Gardening uHAT: Safety First

Earlier in January all ANAVI Gardening uHAT kits were delivered to the Crowd Supply warehouse and soon after that Crowd Supply team sent them to their final destination: our valuable and trusting crowdfunding backers! Thank you again for the support.

ANAVI Gardening uHAT Developer Kit
ANAVI Gardening uHAT Developer Kit

ANAVI Gardening uHAT is a versatile development board, so please follow the instructions below for safe use:

  • ANAVI Gardening uHAT should only be connected to a compatible Raspberry Pi with 40-pin header.
  • Do not expose it to water or moisture, and do not place it on a conductive surface whilst in operation.
  • Do not expose it to heat from any source; it is designed for reliable operation at normal room temperatures.
  • Take care while handling the board to avoid mechanical or electrical damage to the printed circuit board and connectors.
  • Avoid handling ANAVI Gardening uHAT while it is powered on. Only handle by the edges to minimize the risk of electrostatic discharge damage.

In the meantime, there is a work in progress going on the user’s manual which is available at GitHub. We will soon update it. As usual, GitHub pull requests with improvements and fixes to the documentation or the source code examples are always welcome.

You may also like

ANAVI Gardening uHAT Manufacturing Progress

We have good news regarding ANAVI Gardening uHAT! All boards have been received almost fully assembled from the local factory and we have sourced all required peripherals.

Recently, we received the last batch of assembled printed circuit boards from the local factory. As you can see on the photo, only the EEPROM is missing. We will flash and solder it in-house.

The winter is coming… Grab a ANAVI Gardening uHAT for your Raspberry Pi

We have also received additional peripherals, which will be included in ANAVI Gardening uHAT Starter, Advanced, and Developer kits. On the photo you can see the big packages with analog capacitive soil moisture sensor. Each kit will contain a couple of capacitive soil moisture sensors.

Capacitive Soil Moisture Sensor v1.2

The recyclable cardboard boxes for our eco-friendly packaging have also already been delivered. Another local company here in Plovdiv, Bulgaria will print all stickers for us. We expect them next week.

Our crowdfunding campaign recently ended very successfully but you can still order our open source Gardening uHAT for your Raspberry Pi and be among the very first owners!

You may also like

MicroPython on Raspberry Pi Pico with Thonny IDE

Raspberry Pi Pico is a tiny and fast development board by the Raspberry Pi Foundation built using the brand new RP2040 32-bit dual ARM Cortex-M0+ microcontroller. The major advantage of Raspberry Pi Pico is the affordable price as it is available for about $4 (without taxes and shipping).

In this video tutorial you will learn how to get started with MicroPython using the open source Thonny IDE on Raspberry Pi Pico. Thonny runs on Mac, Windows and Linux distributions, in the video it is used on Ubuntu. The video includes Pico unboxing, MicroPython installation guide, blinking LED example, MicroPython REPL demo and conclusions.

Useful links:

The video tutorial was sponsored by PCBway which provide high-quality prototyping services. On the photo you can see prototypes of green printed circuit boards with white silkscreen following Raspberry Pi specifications for micro Hardware Attached on Top (uHAT).

You may also like

ANAVI Gardening uHAT

ANAVI Gardening uHAT is a low-cost, open source Raspberry Pi add-on board that helps you develop smart solutions for monitoring and growing plants.

ANAVI Gardening uHAT supports multiple sensors for soil moisture, temperature, humidity, barometric pressure, and light. Getting started is easy: just plug it into a Raspberry Pi with your bare hands and follow the instructions in the user manual. No soldering is necessary, and no tools are required.

We hope you’ll jump in and help us bring this entirely open source gardening project to life by supporting our new crowdfunding campaign at Crowd Supply.

You may also like

Add Capacitive Soil Moisture Sensors to Raspberry Pi

Raspberry Pi is a famous series of small single-board computers (SBCs) developed in the United Kingdom by the Raspberry Pi Foundation in cooperation with Broadcom. This is a step by step tutorial for using Raspberry Pi and capacitive soil moisture sensor with Microchip MCP3002 analog-to-digital converter (ADC) and a Python script for detecting the soil moisture in percentage.

Capacitive Soil Moisture Sensor

Capacitive Soil Moisture Sensor v1.2 and v2.0 measures the volumetric content of water inside the soil and retrieves the moisture level by capacitive sensing rather than resistive sensing like other sensors. The benefit of using a capacitive soil moisture sensor is the lack of corrosion and longer lifespan.

Wiring

Unlike Raspberry Pi Pico, the recently released microcontroller, all versions and models of the Raspberry Pi single-board computers do not include an analog-to-digital converter (ADC). This tutorial explains how to use Microchip MCP3002 with Raspberry Pi.

Microchip MCP3002 is a 10-bit resolution, dual channel ADC with SPI hardware bus. It can be connected to any Raspberry Pi single board computer version and model, including Raspberry Pi 4 and Raspberry Pi 0. However, this tutorial is not for Raspberry Pi Pico microcontroller. For more details about the wiring of Microchip MCP3002 a Raspberry Pi single-board computer have a look at my previous tutorial.

Prototypes for Raspberry Pi add-on boards

Alternatively, the easier option without a breadboard an a bunch of cables, is to use a dedicated Raspberry Pi add-on board with built-in ADC. Using the free and open source tool KiCad we designed ANAVI Gardening uHAT exactly for this purpose. It has dedicated pins for connecting a couple of capacitive soil moisture sensors. The prototype has been created thanks to PCBWay. This is a lead-free prototype printed circuit board with 2 layers, green solder mask and white silkscreen. PCBway offers a huge variety of colors and even flexible PCB.

Software

Flash Raspberry Pi OS, the official Debian based GNU Linux distribution by the Raspberry Pi, on microSD card and boot it. On the Raspberry Pi, open a terminal and using the raspi-config tool enable SPI as shown in the video. Reboot the Raspberry Pi.

Python3 script for reading data from a couple of capacitive soil moisture sensors through Microchip MCP3002 ADC is available at the anavi-examples repository in GitHub. The script relies on popular Python libraries spidev and RPi.GPIO. Open a terminal and run the following commands to clone anavi-examples and run the script:

git clone https://github.com/AnaviTechnology/anavi-examples.git
cd anavi-examples/anavi-gardening-uhat/soil-moistore-sensors/python/
python3 soil-moistore-sensors.py

You may also like

ANAVI Macro Pad 2 – a Tiny 2% Mechanical Keyboard

ANAVI Macro Pad 2

Meet ANAVI Macro Pad 2! It is an open source, programmable two-key mechanical keypad with backlighting. Each of the keys on ANAVI Macro Pad 2 can be reprogrammed for use as a macro or even as a dedicated shortcut key, making it perfect for a number of applications across various industries.

ANAVI Macro Pad 2

ANAVI Macro Pad 2 runs on a Microchip ATtiny85, which is a reliable, low-cost, 8-bit AVR RISC-based microcontroller. It has a gold-plated printed circuit board, Gateron red mechanical switches, 3mm red LEDs and translucent keycaps.

Gateron red mechanical switches with 3mm LEDs on ANAVI Macro Pad 2

Only free and open source software tools like KiCad, OpenSCAD, and Inkscape were used to design ANAVI Macro Pad 2. Quantum Mechanical Keyboard (QMK) with V-USB is the default open source firmware. Source code and schematics are available on GitHub.

ANAVI Macro Pad 2 with stickers on the translucent keycaps of the mechanical switches

We kicked off a crowdfunding campaign for ANAVI Macro Pad 2 at Crowd Supply. We have a stable product and we are ready to proceed with low-volume manufacturing. We hope you help us bring this entirely open source project to life by ordering a developer or a maker kit!

You may also like

ANAVI Macro Pad 8 Maker Kit Assembly Guide

In a previous update we shared the exact steps how to assemble ANAVI Macro Pad 8 Developer Kit. Now let’s have a look at the Maker Kit.

ANAVI Macro Pad 8 Maker Kit Soldering and Assembly Video Tutorial

The maker kit provides the printed circuit board (PCB) and an addressable LED strip. There are also some nice stickers. Other accessories have to be purchased separately. You can use any mechanical switches compatible with Cherry MX plate footprint and 3mm LEDs.

ANAVI Macro Pad 8 Maker Kit Unboxing

Furthermore with the maker kit you can perform a hot-swap upgrade of ANAVI Macro 8. It requires a very specific procedure which was explained in a previous article. If you have this in mind don’t solder anything and have a look at the other video tutorial.

Required tools for soldering of ANAVI Macro Pad 8 Maker Kit

The assembly of ANAVI Macro Pad 8 Maker Kit requires soldering and advanced skills. The following tools are required:

  • Soldering iron
  • Scissors
  • Optionally: screwdriver, tweezers and a keycap puller

It is also a good idea to stay safe and get a smoke absorber while soldering, for example our open source ANAVI Fume Extractor.

Please have a look at the video and follow the steps below if you have ANAVI Macro Pad 8 Maker Kit.

Solder mechanical switches to the PCB

Any type of mechanical switch compatible with Cherry MX plate footprint is suitable for ANAVI Macro Pad 8. The developer kit comes with Gateron mechanical switches. The maker kit allow you to use different brand and color.

Choosing the most appropriate switch for your needs and taste is a matter of personal preference. There are many different brands and colors. For example, the blue mechanical switches are more noisy which could be sometimes fun but also annoying during daily work. The red switches are fast and not very noisy therefore they are often proffered by gamers.

There are two pins on each mechanical switch that must be soldered to the printed circuit board. That makes 16 pins in total. The position of the each pin is very specific and the switch goes into the PCB. One of the pins is for the signal coming from the Microchip ATmega32U4 microcontroller, the other pin is for ground.

Solder 3mm LED

This step is actually optional depending on the the type of the mechanical switch. Some mechanical switches may not have a hole in the plastic enclosure for a 3mm LED.

Each 3mm LED for through-hole soldering has 2 legs. The longer leg is the positive terminal, also known as anode. The shorter leg is negative and also known as cathode.

The shorter leg that indicates the negative terminal must go into the square hole of the PCB. ANAVI Macro Pad 8 has 8 mechanical switches therefore 8 LEDs are required. If you want you can use different color of the LEDs. You can even mix colors.

Solder WS2812B addressable LED strip to the back of the PCB

Using scissors cut a little bit from both ends of the LED strip to make sure it will stretched when placed on the board. However it is tricky, be careful and make sure enough from the pads are available to make a good contact after soldering them.

It is very important to properly set the direction of the WS2812B LED strip. On the LED strip you will notice small arrows indicating the direction. They should point from the microUSB connector towards the other end of the PCB as shown in the video.

If you have successfully completed these 3 steps your ANAVI Macro Pad 8 should look just like a developer kit having all accessories soldered. Therefore the next steps are the same as for both the developer and the maker kit. Explore them at our previous blog post as well as in the user’s manual.

Thank you for using ANAVI Macro Pad 8 and for supporting this entirely open source project!

You may also like