Transform Wii Nunchuk into a USB-C Joystick for Your PC with ANAVI Handle


Let’s explore how to retrofit a classic Wii Nunchuk controller using ANAVI Handle, an open source hardware USB-C adapter that lets you connect a wired Nunchuk controller to any modern PC, be it a laptop or desktop. In this tutorial, you will learn how to configure the Nunchuk as a joystick and enjoy the open-source game “Tiny Crate”, all within your web browser.

Hardware Requirements

To get started, you’ll need:

  • A personal computer
  • A USB Type-C cable
  • An ANAVI Handle along with a Wii Nunchuk (or another compatible controller)

Software Configuration

Begin by connecting your Wii Nunchuk controller to your computer using the ANAVI Handle, an open-source hardware adapter. Next, edit the config.json file to enable joystick mode by adding:

{
    "type": "joystick"
}

The ANAVI Handle’s default open-source firmware (written in CircuitPython) uses the analog stick and buttons on the Nunchuk to control movement in joystick mode. After modifying config.json, disconnect and reconnect the ANAVI Handle to apply the changes.

The ANAVI Handle’s RGB LED provides visual feedback on the connection status:

  • A green light indicates a successfully connected Nunchuk controller.
  • A blue light shows the controller has been disconnected from the ANAVI Handle.
  • A red light signals an absent or improperly connected Nunchuk controller.

In the video, you’ll see the green light illuminated, confirming that everything is functioning correctly.

To quickly verify that your controller is working in joystick mode, load the HTML5 Gamepad Test in a modern web browser. This open-source tool is available on GitHub under the MIT license and provides a simple way to check your controller’s functionality.

Let’s Play!

Once everything is set up, you’re ready to dive into games that support joysticks!

While preparing this video, I discovered an incredible game called Tiny Crate. It’s a 2D puzzle game with charming pixel art graphics and joystick compatibility. Despite being a puzzle game, its game play evokes a sense of nostalgia for classic jump-and-run titles. Tiny Crate is an open-source game, with its source code available on GitHub. Developed using the Godot game engine, it’s playable on multiple platforms including Windows, macOS, Linux, and even Android.

I featured Tiny Crate while demonstrating the ANAVI Handle during the “Show and Tell” segment of Pi Wars, a Raspberry Pi-based, non-destructive robotics competition. Pi Wars 2024 took place on April 20th-21st in Cambridge, UK, attracting 58 teams of robot engineers. During my demonstration, children of all ages were captivated by Tiny Crate, so much so that many were too absorbed in solving game levels to notice the ANAVI Handle or the Nunchuk controller. This speaks volumes about the quality of Tiny Crate and the effectiveness of the ANAVI Handle in seamlessly converting the Nunchuk controller into a USB HID device.

If you’re passionate about gaming innovation and eager for a new experience, all you need is a Nunchuk controller and an ANAVI Handle. After a successful crowdfunding campaign ANAVI Handle is available at Crowd Supply. We will soon stock it at our other distributors. Follow this guide and get ready to enjoy hours of fun with your favorite games!

You may also like

ANAVI Arrows and ANAVI Macro Pad 12 Are Open Source Hardware Certified

The ANAVI Macro Pad 12 and ANAVI Arrows have received official certification from the Open Source Hardware Association (OSHWA). OSHWA, a non-profit organization based in the United States, manages the Certified Projects Directory and hosts the annual Open Hardware Summit. Notably, the summit takes place in different cities, and in 2024, it is scheduled to be held in Montreal, Canada.

The printed circuit boards of ANAVI Macro Pad 12 and ANAVI Arrows were designed the open source software KiCad

The certification program by OSHWA ensures that a project’s understanding of “open source hardware” is in harmony with the wider community’s definition of open source hardware. Subsequently, OSHWA assigns a unique identification number (UID) to every certified hardware version. This UID commonly comprises a blend of a country code and a numerical sequence, ensuring that each certified hardware version possesses a distinct identifier. For our two new keyboards, the UIDs are:

BG000094 for ANAVI Arrows version 1.0
BG000095 for ANAVI Macro Pad 12 version 1.0

The OSHW Certification Mark serves a dual role: not only does it display the project’s unique certification ID, but it also streamlines navigation and information retrieval. In this context, the “BG” prefix signifies the country code for Bulgaria, indicating that these mechanical keyboards are crafted in Plovdiv, the second-largest city in Bulgaria and the oldest continually inhabited European city with over 6000 years of history. What sets our keyboards apart is their complete adherence to open-source principles. This means that every facet of their design and functionality is open and freely accessible to everyone. Our dedication to openness extends to utilizing only free and open source software in various project aspects, including designing the printed circuit board, creating acrylic enclosures, developing firmware, and thoroughly documenting the entire process.

The printed circuit boards for ANAVI Arrows and ANAVI Macro Pad 12 were designed with the open source software KiCad on Ubuntu Linux distribution. Furthermore, we use open source firmware called KMK, written in CircuitPython. Soon QMK firmware will be also ported to both keyboards. Open source ensures transparency, sharing knowledge and hopefully fostering collaboration and innovation within the community.

You may also like

Understanding I2C: Exploring OLED Displays and Peripherals on Futuristic Mechanical Keyboards

I2C (Inter-Integrated Circuit) is a popular serial communication protocol that allows multiple integrated circuits to communicate with each other over a short distance, typically limited to a few meters. Each device on the bus has a unique address, identifying it and allowing it to communicate individually. The protocol was developed by Philips (now NXP Semiconductors) in the 1980s. Over the years it has become a standard for communication between various electronic components in embedded devices. I2C can be used to connect various peripherals, such as sensors, displays and EEPROMs. The mini OLED yellw-blue displays on our compact mechanical keyboards ANAVI Macro Pad 12 and ANAVI Arrows are connected to the Raspberry Pi RP2040 microcontrollers over I2C.

ANAVI Arrows and ANAVI Macro Pad 12 are open source mechanical keyboards with mini OLED I2C displays

I2C is easy to use becase it requires only two wires for communication:

  • SDA (Serial Data) for transmitting and receiving data between devices
  • SCL (Serial Clock) for a clock signal to synchronizes the data transfer between the devices

The core component of our hot-swappable mechanical keyboards ANAVI Macro Pad 12 and ANAVI Arrows is Seeed Studio XIAO RP2040 module. This is actually a tiny development board suitable for surface-mount technology (SMT) assembly and equipped with a Raspberry Pi RP2040 32-bit dual-core ARM Cortex M0+ MCU, 264 KB SRAM, 2 MB Flash memory, 11 GPIO pins and USB-C connector. The I2C interface is located on pins D4 (for SDA) and D5 (for SCL) of XIAO RP2040.

Seeed Studio XIAO RP2040 module on ANAVI Macro Pad 12 mechanical keyboard

A yellow-blue mini OLED I2C display is included in all kits with ANAVI Macro Pad 12 and ANAVI Arrows. It has 4 pins: GND (ground), VCC (supply voltage), SCL, and SDA. This display relies on SSD1306, a single-chip CMOS OLED/PLED driver with controller for organic / polymer light emitting diode dot-matrix graphic display system which consists of 128 segments and 64 commons. It is the same display we include in our other mechanical keyboards like the ANAVI Macro Pad 10 and ANAVI Macro Pad 8, Internet of Things devices like the ANAVI Thermometer and ANAVI Gas Detector, tools like ANAVI Fume Extractor, and Raspberry Pi add-on boards like ANAVI Info uHAT. This versatile mini OLED display is a great fit for many projects, You can pick one up at Mouser if you need a spare.

Mini yellow-blue 0.96″ OLED display attached to ANAVI Macro Pad 12 with QMK firmware for mechanical keyboards

There is a dedicated slot for the display on the printed circuit board. Just plug the mini OLED display into it and then connect the mechanical keyboard to a computer. In every kit with ANAVI Macro Pad 12 and ANAVI Arrows, you will find four additional male-to-female jumper wires included, providing you with an exciting opportunity to get creative with your project. If you decide to design your own 3D printed case for the keyboard, these jumper wires may become handy. They grant you the flexibility to reposition the mini OLED display to a location of your choice within the case.

ANAVI Macro Pad 12 is compatible the two most popular open source firmwares for mechanical keyboards: KMK and QMK. KMK is written in CircuitPython and QMK in the C programming language. Both support OLED displays over I2C.

Out of the box ANAVI Macro Pad 12 and ANAVI Arrows come with the KMK firmware. It uses the extension Peg Oled Display based on the open source CircuitPython libraries Adafruit_CircuitPython_DisplayIO_SSD1306 and Adafruit_CircuitPython_Display_Text. This extension allows your keyboard to display images or text and even to react to the currently selected keyboard layer.

ANAVI Macro Pad 12 with a breadboard and additional I2C peripherals

Makers with advanced skills have a fantastic opportunity to extend the capabilities of the keyboard project by adding more I2C peripherals. Using a breadboard and without any soldering, makers can easily connect additional I2C peripherals, such as sensors or other modules that communicate via I2C, to the existing setup. This allows them to expand the project’s functionalities and explore various creative ideas. Those seeking a more permanent and tailored extension can even design their own custom I2C add-on printed circuit board. The mini OLED displays included in the kits work out of the box, but it is important to be aware that incorporating any other I2C devices into the keyboard will require adjusting the KMK firmware to support the additions.

Support our crowdfunding campaign and get the open source mechanical keyboards ANAVI Macro Pad 12 and ANAVI Arrows with a mini OLED display for real-time notifications and customizable graphics at your fingertips. Learn how to use I2C and unleash your creativity by extending the keyboard with additional peripherals!

You may also like

KMK: Harnessing the Potential of Open Source and CircuitPython to Energize Mechanical Keyboards

Within the realm of computer keyboards, a remarkable open-source firmware called KMK has surfaced, captivating enthusiasts from all corners. KMK possesses a potent capability to revolutionize mechanical keyboards into personalized instruments, enabling users to venture into uncharted territories of customization and productivity.

KMK Open Source Mechanical Keyboard Firmware Written in CircuitPython

CircuitPython is an open-source programming language that runs on microcontrollers used in various embedded applications, including mechanical keyboards like ANAVI Macro Pad 12 and ANAVI Arrows from our crowdfunding campaign at Crowd Supply. Built upon the foundations of Python, CircuitPython is specifically crafted to cater to the requirements of resource-limited embedded devices housing microcontrollers. One of the standout merits of CircuitPython lies in its user-friendly nature and effortless adaptability, particularly beneficial for newcomers who may not possess extensive coding expertise.

ANAVI Arrows and ANAVI Macro Pad 12 with the open source firmware KMK written in CircuitPython

The source code of KMK is readily available on GitHub, released under the GPLv3 license. The inception of KMK can be traced back to 2018. Notably, the KMK source code follows a coding style that employs the Python code formatter, known as Black, and embraces the usage of single quotes.

KMK firmware runs on Raspberry Pi RP2040 microcontoller which is in the core of Seeed Studio XIAO RP2040 module

The hardware requirements for microcontrollers to run KMK are: a minimum of 256KB of flash storage, support HID over USB and/or Bluetooth, CircuitPython version 7.0 or newer. With its impressive hardware capabilities, the Raspberry Pi RP2040 microcontroller is a perfect fit for CircuitPython and KMK. Because of this we selected Seeed Studio’s XIAO module with RP2040 for ANAVI Macro Pad 12 and ANAVI Arrows.

KMK offers many key features:

  • Key Mapping: Customize key assignments to suit individual preferences
  • Macros: Create and assign macros for automating tasks or executing commands
  • Layers: Define multiple virtual layers for accessing different functions or modes
  • LED Control: Customize backlighting and LED behavior
  • Rotary Encoder: Rotary encoders for various functions like volume control or scrolling.
  • Mini OLED Display: Compatibility with mini OLED displays, allowing users to display custom information or visuals on their keyboards
Back-light and under-light effects with KMK firmware on the mechanical keyboards ANAVI Macro Pad 12 and ANAVI Arrows

KMK supports many mechanical keyboards, including ANAVI Macro Pad 12 and ANAVI Arrrows. Although you are free to change to another firmware at any time, both ANAVI Macro Pad 12 and ANAVI Arrrows out of the box will come with KMK pre-installed.

You may also like

Introducing ANAVI Macro Pad 12 and ANAVI Arrows

We are back with two brand new fully programmable, open source, hot-swappable compact mechanical keyboards: ANAVI Macro Pad 12 and ANAVI Arrows. The crowdfunding campaign is now live at Crowd Supply!

ANAVI Arrows and Macro Pad 12


Both ANAVI Macro Pad 12 and ANAVI Arrows feature high-quality gold-plated circuit boards designed with the free and open source software KiCad. These compact keyboards are driven by the Seeed Studio XIAO RP2040 with Raspberry Pi RP2040 microcontroller, ensuring top-notch performance. Equipped with a USB-C connector and a charming mini yellow-blue OLED display, they combine functionality with visual appeal. Thanks to the popular open-source KMK firmware written in CircuitPython, personalizing keyboard layouts and macros becomes a breeze.

ANAVI Arrows

Import your typing experience with our bright and shiny compact mechanical keyboards, made in Plovdiv, Bulgaria, EU. Support our crowdfunding campaign and help us bring these unique and high-quality open source keyboards to life.

You may also like

Improving the Firmware of ANAVI Macro Pad 10, ANAVI Knobs 3 and ANAVI Knob 1

There are two different options for mechanical keyboard open source firmware for ANAVI Macro Pad 10, Knobs 3, and Knob 1: KMK and QMK. Both of which have been getting upgrades recently!

KMK is a feature-rich and beginner-friendly open source firmware for mechanical keyboards, written in CircuitPython, which comes preloaded on the Macro Pad 10 and Knobs 1 and 3. The source code is available on GitHub under the GPLv3 license. So… if you have code suggestions to make it better, just open a GitHub pull request. This is exactly what Stefan Misch recently did, by improving the encoder resolution.

ANAVI Macro Pad 10, ANAVI Knobs 3 and ANAVI Knob 1

Huge thanks to Stefan for his valuable contribution to the upstream of KMK! If you own Macro Pad 10, Knobs 3, and Knob 1, please consider upgrading the KMK firmware on your mini mechanical keyboard to get his fix.

In other news: the GitHub pull request that adds support for ANAVI Knobs 3 was finally merged in QMKQMK stands for Quantum Mechanical Keyboard. It is probably the most popular firmware for mechanical keyboards and supports literally hundreds of devices, including ANAVI Macro Pad 8 and our other mechanical keyboards. The source code is available under GPLv2 license and written in C. Initial support for the Raspberry Pi RP2040 microcontroller in QMK was added in September 2022. We started the porting efforts in October, and shortly after that, patches for ANAVI Macro Pad 10 and Knob 1 were merged. However, it took almost 6 months to merge the GitHub pull request for ANAVI Knobs 3. The long wait is over: now all of our mini mechanical keyboards are supported by QMK!

ANAVI Knobs 3

The community is very important and makes all the difference in any open source project. Thank you for supporting and improving our open source hardware mechanical keyboards!

You may also like

ANAVI Macro Pad 10 & Knobs are Funded!

The launch of our crowdfunding campaign was a blast! ANAVI Macro Pad 10, ANAVI Knobs 3, and ANAVI Knob 1 were all fully funded and all stretch goals were met in the first week. Thanks to all backers and Crowd Supply for bringing life to these three entirely open source projects!

As part of the covered stretch goals, each kit will include stickers from ANAVI Technology and KiCad, the free and open source CAD software used for designing the printed circuit boards of the keyboards. Furthermore, ANAVI Macro Pad 10 kits will include 32 super-cool emoji stickers. You can stick them on the top or sides of the translucent keycaps. Last but not least, we’ll be publishing various video tutorials to ensure getting started is easy.

One more thing… Recently, our mini mechanical keyboards were featured in an article by CNX Software. This is a very popular website with news and tutorials about embedded systems, makers, and open source hardware. It was started in 2010 by Jean-Luc Aufranc. By the way it is worth keep an eye on CNX Software because there are always news about interesting gadgets!

You may also like

ANAVI Macro Pad 10 and Knobs are Here!

One, two, three new products! After several months of development we are happy to present you 3 new open source hardware mini mechanical keyboards and knobs. The crowdfunding campaign started on Monday!

ANAVI Knob 1, ANAVI Knobs 3 and ANAVI Macro Pad 10

ANAVI Macro Pad 10, ANAVI Knobs 3 and ANAVI Knob 1 all come with gold-plated black printed circuit boards, Raspberry Pi RP2040 microcontrollers, USB-C connector and clickable rotary encoders. The popular open source KMK firmware allows you to easily program and configure custom keyboard layouts and macros using CircuitPython.

ANAVI Knobs 3

Once again we rely on Crowd Supply for the crowdfunding. The campaign has a very modest goal of just $1 and it has been already funded. Our plan is to make the keyboards in Plovdiv, Bulgaria, EU thanks to the trusted supply chain we have established throughout the years. We hope you will jump in and help us bring these entirely open source mechanical keyboards to life!

ANAVI Knob 1, ANAVI Macro Pad 10 and ANAVI Knobs 3

You may also like

ANAVI Macro Pad 10 and Knobs Coming Soon

With Crowd Supply we are preparing a new crowdfunding campaign for 3 open source hardware mechanical keyboards: ANAVI Macro Pad 10, ANAVI Knobs 3 and ANAVI Knob 1.

ANAVI Macro Pad 10, ANAVI Knobs 3 and ANAVI Knob 1

There are many common things between these 3 mini mechanical keyboards:

  • Seeed XIAO RP2040 – a power module with USB-C and Raspberry Pi RP2040 MCU from Seeed Studio
  • Rotary encoders
  • KMK – an open source firmware for mechanical keyboards written in CircuitPython
  • Open source hardware designed with the free and open source software KiCad

Subscribe at our pre-launch page at Crowd Supply to be the first to know when we launch the crowdfunding campaign!

You may also like

Building an Air Quality Monitor with ANAVI Infrared pHAT and MH-Z19

Takuya Matsuyama, a developer from Japan making a Markdown note-taking app called Inkdrop, published a wonderful tutorial how to build an air quality monitor using Raspberry Pi Zero W, ANAVI Infrared pHAT and MH-Z19B NDIR infrared gas module.

How to build an air quality monitor using Raspberry Pi Zero W + ANAVI Infrared pHAT

MH-Z19B is an intelligent infrared CO2 module which interacts with the Raspberry Pi using UART (universal asynchronous receiver-transmitter). Takuya uses the UART port on ANAVI Infrared pHAT to attach MH-Z19B. The rest of the sensor modules for his setup are included in ANAVI Infrared pHAT Advanced kit: HTU21D for temperature and humidity, BMP180 for barometric pressure and BH1750 for light.

By the way, initially we had published open source examples for using HTU21D, BMP180 and BH1750 in the C programming languages using the library wiringpi. Takuya also based his setup on wiringpi. However, wiringpi is now deprecated therefore we have replaced it with another library called libi2c-dev. Furthermore we added examples written in Python 3.

You may also like